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A horizontal fluid layer heated from below and rotating about a vertical axis in the
presence of a vertical magnetic field is considered. From earlier work it is known that
the onset of convection in a rotating layer usually occurs in the form of travelling
waves attached to the vertical sidewalls of the layer. It is found that this behaviour
persists when a vertical magnetic field is applied. When the Elsasser number Λ is
kept constant and the sidewall is thermally insulating the critical Rayleigh number Rc

increases in proportion to the rotation rate described by the square root of the Taylor
number, τ . This asymptotic relationship is found for an electrically highly conducting
sidewall as well as for an electrically insulating one. At fixed rotation rate for Q � τ ,
Rc grows in proportion to Q when the sidewall is electrically highly conducting,
and in proportion to Q3/4 when the sidewall is electrically insulating. Here Q is the
Chandrasekhar number which is a measure of the magnetic energy density, and a
thermally insulating sidewall has been assumed. Of particular interest is the possibility
that the magnetic field counteracts the stabilizing influence of rotation on the onset
of sidewall convection in the case of thermally insulating sidewalls. When the sidewall
is thermally highly conducting, Rc for the sidewall mode grows in proportion to τ 4/3.
This asymptotic behaviour is found for both cases of electrical boundary conditions,
but it no longer precedes the onset of bulk convection for Λ � 1.

1. Introduction
The effect of rotation about a vertical axis on Rayleigh–Bénard convection in a

horizontal fluid layer heated from below has been studied for a long time. Early
results have been reviewed in (Chandrasekhar 1961, referred to as CH61 in the
following). Besides the onset of convection in the bulk of the fluid there exists a
second mode of convection supported by the sidewalls of the layer which originally
had been predicted as a steady mode by Buell & Catton (1983). Zhong, Ecke &
Steinberg (1991) confirmed experimentally the existence of the sidewall mode and
demonstrated that it is a travelling wave phenomenon. The correct theory was later
given by Goldstein et al. (1993).

The influence of a vertical magnetic field on Rayleigh-Bénard convection has
also received considerable attention in the past, mainly because of its astrophysical
applications. It has been described in detail in CH61 where the combined effect of
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rotation and an applied magnetic field is also addressed. Since both rotation and
a vertical magnetic field exert a stabilizing influence on the onset of convection it
might have been expected that the two effects enhance each other. Chandrasekhar has
demonstrated, however, that an applied homogeneous magnetic field can counteract
the stabilizing effect of rotation. One of the goals of the analysis of the present paper
is to find out whether this phenomenon also occurs in the case of sidewall convection.

The numerical analysis by Goldstein et al. (1993) of the onset of sidewall convection
in a cylindrical layer has been extended by Herrmann & Busse (1993, referred to as
HB93 in the following) and Kuo & Cross (1993) to the case of a straight sidewall. In
these papers the influence of the thermal boundary conditions of the sidewall has been
emphasized. The critical Rayleigh number Rc, for instance, increases proportionally
to the rotation rate when the sidewall is insulating, while it grows with the 4/3 power
of the rotation rate when the sidewall is infinitely conducting.

In the system considered in the present work the fluid is electrically conducting
and additional properties of the sidewall enter the analysis. We shall restrict attention
to cases when the electrical conductivity is either much larger or much lower than
that of the fluid. The top and bottom surfaces are assumed to be stress-free and
electrically insulating in all cases. The use of these boundary conditions simplifies the
analysis and elucidates the mathematical structure of the problem. It is also justified
by the property that for large rotation rates the critical Rayleigh number, precession
frequency and azimuthal wavenumber of the wall mode converge for stress-free and
for no-slip top and bottom surfaces according to Goldstein et al. (1993).

The paper starts with the mathematical formulation of the problem and an outline
of the numerical methods in § 2. The method of solution is presented in § 3. Results
of the numerical study are presented in separate sections for a thermally insulating
sidewall, § 4, and for a thermally well-conducting sidewall, § 5. Additional results for
smaller Prandtl numbers are included in § 6. A discussion and concluding remarks
are given in § 7.

2. Mathematical and numerical models
We consider a horizontal layer (see figure 1) of height d of an electrically

conducting fluid, with constant temperatures, T1 and T2 with T1 <T2, at top and
bottom boundaries, respectively. The layer is rotating about a vertical axis with an
angular velocity Ω and is in a homogeneous vertical magnetic field with the flux
density B0. We denote by κ , σ and μ the thermal diffusivity, electrical conductivity
and magnetic permeability of the fluid, respectively. Using d , d2/κ , κ/d , �T ≡ T2 −T1,
and B0 as scales for length, time, velocity, temperature, and magnetic field strength,
respectively, we write the equation of motion, the continuity equation, the heat
equation for the deviation θ of the temperature from the static distribution, and the
equation of magnetic induction in the form

(∇2 − P −1∂t )u = P −1(u · ∇u + ∇p) + τ × u − Rθ k̂ − Q
(

k̂ · ∇ +
κ

λ
b · ∇

)
b (2.1)

∇ · u = 0, (2.2)

(∂t + u · ∇) θ = u · k̂ + ∇2θ, (2.3)

κ

λ
(∂t b + u · ∇b − b · ∇u) = ∇2b + k̂ · ∇u, (2.4)

∇ · B = 0. (2.5)
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Figure 1. Geometrical configuration of the problem of wall-attached convection in the
presence of a vertical magnetic field.

Here we have introduced the dimensionless magnetic field in the form B = k̂+κb/λ,
where λ≡ (σμ)−1 is the magnetic diffusivity. The Boussinesq approximation has been
assumed and as in previous analytical studies of the onset of sidewall convection in
a cylindrical layer (see Goldstein et al. 1993; Herrmann & Busse 1993; Kuo & Cross
1993), the centrifugal force has been neglected in comparison to gravity, i.e. Ω2r0 � g.
This approximation can be satisfied even with d � r0 and τ � 1 if a sufficiently low
kinematic viscosity ν is assumed. For a recent study of the centrifugal effects in
rotating convection see Marqués et al. (2007).

The problem is characterized by four dimensionless parameters, the Rayleigh,
Prandtl, Coriolis and Chandrasekhar numbers, defined, respectively, as

R = αg�T d3/νκ, P = ν/κ, τ = 2Ωd2/ν, Q = B2
0d

2/ρμνλ. (2.6)

In expressions (2.6) α, ν and ρ are the thermal expansion coefficient, kinematic
viscosity, and density of the fluid, respectively; g is the gravitational acceleration.

It is convenient to use the following general representation for the solenoidal fields
u and b:

u = ∇ × (∇v × î) + ∇w × î, (2.7)

b = ∇ × (∇h × î) + ∇ξ × î, (2.8)

where v, w and h, ξ describe the poloidal and toroidal components of the velocity

and magnetic fields, respectively, and î is the unit vector normal to the sidewall and
directed into the fluid. In the following a Cartesian system of coordinates will be

used with the x-coordinate in the direction of î and the z-coordinate in the vertical
direction opposite to the direction of gravity. The velocity components are thus given
by (ux, uy, uz) = (−�2v, ∂xyv + ∂zw, ∂xzv − ∂yw) where �2 ≡ ∂2

yy + ∂2
zz .

Since liquid metals and some other electrically conducting fluids are characterized
by very low values of the ratio κ/λ we shall assume the limit κ/λ� 1 and neglect
terms of order κ/λ. Applying the operators �1 ≡ (0, ∂z, −∂y) and �2 ≡ (−�2, ∂xy , ∂xz )
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to (2.1), we obtain the following equations for the toroidal and poloidal components
of the magnetic and velocity fields, together with rewritten (2.3) for the temperature:

(∇2 − P −1∂t )∇2�2v + R∂xzθ − τ∂z�2w − Q∂2
zz�2v = 0, (2.9)

(∇2 − P −1∂t )�2w + τ�2∂zv − R∂yθ + Q∂z�2ξ = 0, (2.10)

∇2�2ξ + ∂z�2w = 0, (2.11)

(∇2 − ∂t )θ − ∂yw + ∂2
xzv = 0. (2.12)

Using (2.9)–(2.12) the following equation involving only the toroidal potential of the
velocity field can be obtained:

{[
(∇2 − P −1∂t )∇2 − Q∂2

zz

]2
(∇2 − ∂t ) + τ 2∇2(∇2 − ∂t )∂

2
zz

− R
[
(∇2 − P −1∂t )∇2 − Q∂2

zz

](
∂2

xx + ∂2
yy

)}
w = 0. (2.13)

Since an electrical current, J , cannot enter an electrically insulating sidewall,
Jx =0 must be required at x = 0. At a rigid and electrically well-conducting sidewall
Jy = Jz = 0 must be required. Accordingly the boundary conditions at the stress-free
and electrically insulating top and bottom boundaries and at the rigid sidewall are
given by

∂zv = ∂3
zzzv = w = ∂2

zzw = θ = ∂zξ = 0 at z = ± 1
2
. (2.14)

v = ∂xv = w = 0
∂xθ

θ

}
= 0 for thermally

{
insulating (I)

conducting (C)

∂xξ

ξ

}
= 0 for electrically

{
conducting (B)

insulating (H)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

at x = 0. (2.15)

Because of the assumption κ/λ� 1 the equation for h

∇2�2h + ∂z�2v = 0 (2.16)

could be directly entered into the Lorentz force term of equation (2.9). Hence h does
not enter the analysis and there is no need to specify boundary conditions for it at
this point. We shall return to this problem at the end of § 3.

In order to solve the perturbation equations (2.9)–(2.12) we assume that the
disturbances are travelling waves in the y-direction, with wavenumber β and frequency
ω, and with an exponential decay in the x-direction, perpendicular to the wall.
The combination of stress-free boundaries at z = ± 1/2 and a no-slip boundary at
x = 0 allow separable solutions of the linear problem. The solutions of the constant
coefficient equation (2.13) of tenth order in x are given by a linear combination of
five exponential functions, decaying in the positive x-direction and characterized by
the roots μj (j = 1, . . . , 5). In the axial direction z only the first Fourier mode is
considered. We thus propose a solution for the set of equations (2.9)–(2.12) of the
form

v =

5∑
j=1

Aj exp(−μjx + iβy + iωt) sin(πz), (2.17a)

θ =

5∑
j=1

Bj exp(−μjx + iβy + iωt) cos(πz), (2.17b)
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w =

5∑
j=1

Cj exp(−μjx + iβy + iωt) cos(πz), (2.17c)

ξ =

5∑
j=1

Gj exp(−μjx + iβy + iωt) sin(πz), (2.17d)

where the constants μj are defined as the roots with positive real parts of

q̂j ≡ μ2
j − β2 − π2. (2.18)

Here the constants q̂j , j = 1, . . . , 5 are the five roots of[
q̂

(
q̂ − iω

P

)
+ Qπ2

]2

(q̂ − iω)− τ 2π2q̂(q̂ − iω)−R

[
q̂

(
q̂ − iω

P

)
+ Qπ2

]
(q̂ +π2) = 0.

(2.19)
The coefficients Aj , Bj , Cj , Gj , can be obtained in terms of five unknowns Dj ,
j =1, . . . , 5,

Aj = Dj {β2Rq̂j − (β2 + π2)[q̂j (q̂j − iω/P ) + Qπ2](q̂j − iω)}, (2.20a)

Bj = Dj (β
2 + π2){iβq̂jπτ − μj π[q̂j (q̂j − iω/P ) + Qπ2]}, (2.20b)

Cj = Dj q̂j [iβμj πR + τπ(β2 + π2)(q̂j − iω)], (2.20c)

Gj = Dj [iβμj π2R + τπ2(β2 + π2)(q̂j − iω)]. (2.20d)

The five unknowns Dj are determined by the boundary conditions (2.15) at x = 0,

5∑
j=1

{β2Rq̂j − (β2 + π2)[q̂j (q̂j − iω/P ) + Qπ2](q̂j − iω)}Dj = 0, (2.21a)

5∑
j=1

μj {β2Rq̂j − (β2 + π2)[q̂j (q̂j − iω/P ) + Qπ2](q̂j − iω)}Dj = 0, (2.21b)

5∑
j=1

f̂ j {iβq̂jπτ − μj π[q̂j (q̂j − iω/P ) + Qπ2]}Dj = 0, (2.21c)

5∑
j=1

q̂j [iβμj πR + τπ(β2 + π2)(q̂j − iω)]Dj = 0, (2.21d)

5∑
j=1

ĝj [iβμj π2R + τπ2(β2 + π2)(q̂j − iω)]Dj = 0. (2.21e)

where

f̂ j =

{
μj

1

}
for case

{
I
C

}
, and ĝj =

{
μj

1

}
for case

{
B
H

}
(2.22)

are used.

3. Method of solution
In order to obtain a solution of the system (2.21) of linear homogeneous equations,

the determinant of the coefficient matrix must vanish. It is convenient to rescale the
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parameters of the coefficient matrix to reduce their number by one,

r ≡ ε4R, ω̃ ≡ ε2ω, Q̌ ≡ ε4Q, νj ≡ εμj , qj ≡ ν2
j − ε2(β2 + π2), j = 1, . . . , 5,

(3.1)

where ε is defined by ε ≡ (τπ)−1/3. Equation (2.19) thus becomes[
q

(
q − iω̃

P

)
+ Q̌π2

]2

(q − iω̃) − q(q − iω̃) − r

[
q

(
q − iω̃

P

)
+ Q̌π2

]
(q + ε2π2) = 0,

(3.2)

and the condition that the determinant of the homogeneous system (2.21) must vanish
can be written in a form without ε:

D ≡

∣∣∣∣∣∣∣∣∣∣∣

f1{iβq1 − ν1π[q1(q1 − iω̃/P ) + Q̌π2]} . . .

β2rq1 − (β2 + π2)[q1(q1 − iω̃/P ) + Q̌π2](q1 − iω̃) . . .

ν1{β2rq1 − (β2 + π2)[q1(q1 − iω̃/P ) + Q̌π2](q1 − iω̃)} . . .

q1[iβν1πr + (β2 + π2)(q1 − iω̃)] . . .

g1[iβν1π
2r + π(β2 + π2)(q1 − iω̃)] . . .

∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.3)

The dots indicate the same columns as the first one except that the subscript 1 is
replaced by 2, 3, 4 and 5, respectively. fj and gj are the rescaled version of f̂j and ĝj ,

fj =

{
νj

1

}
for case

{
I

C

}
, and gj =

{
νj

1

}
for case

{
B

H

}
. (3.4)

The goal of the numerical solution is to find the critical parameter values Rc, ωc

and βc as a function of τ and Q. For given values of τ and Q, Rc is the minimum
value as a function of β at which the condition (3.3) can be satisfied. This value of
the Rayleigh number is of primary interest since the onset of convection occurs at
Rc. The corresponding frequency and wavenumber are ωc and βc, respectively. The
problem posed by (3.2), (3.3) has been solved numerically with a Newton–Raphson
method. For a given set of the parameters τ , Q and β and initial values of r and
ω̃ the roots qj of (3.2) are determined first. Then the values of r and ω̃ for which
the real and imaginary parts of the determinant (3.3) vanish are obtained through
the Newton–Raphson iteration. This procedure must be repeated for a sequence of
β-values in order to determine the minimum value of r as a function of β . As a result
the critical parameters (Rc, ωc, βc) for the onset of sidewall convection can be found
for given values of τ and Q.

The boundary condition at the sidewall determines the asymptotic behaviour
at large τ . In the case Q =0 the asymptotic behaviour was obtained by HB93.
To characterize the system, we also use the Elsasser number Λ, defined as the
dimensionless ratio between the magnetic energy and the rotation rate, Λ ≡ Q/τ .
The results obtained for two electrical boundary conditions are presented in two
cases: when the sidewall is thermally insulating and when it is perfectly thermally
conducting. Most of the computations have been performed with P = 1. The cases
P = 0.1 and P =0.025 will be considered briefly in a separate section.

Once the problem defined above has been solved we may return to equation (2.16)
and determine that part of the distortion of the applied magnetic field described by
the poloidal function h. A simple solution of equation (2.16) is given by

h = exp(iβy + iωt) cos(πz)

(
5∑

j=1

Aj

exp(−μjx)

β2 + π2 − μ2
j

+ A0 exp(−x
√

β2 + π2)

)
(3.5)
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Figure 2. The critical Rayleigh number Rc as a function of τ for wall-attached convection
with a thermally insulating sidewall and P =1 is obtained numerically for: Q = 0 (solid line),
Q = τ , electrically insulating sidewall (lower dashed line), Q = τ , electrically conducting sidewall
(upper dashed line), Q =10τ electrically insulating sidewall (lower dash-dotted line), Q =10τ
electrically well-conducting sidewall (upper dash-dotted line), and the critical Rayleigh number
for bulk convection (CH61) for the case Q = τ (dotted line).

where A0 must be chosen such that either h = 0 for the electrically highly conducting

sidewall or ∂h/∂x = h
√

β2 + π2 for the insulating sidewall are satisfied at x = 0. The
latter condition ensures that h and its normal derivative match a potential field in
the half-space x � 0. The solution (3.5) corresponds to a periodic continuation of the
convection layer in the z-direction which is compatible with the boundary conditions
(2.14) and (2.15). But more complex solutions of equation (2.16) could be derived
which satisfy other conditions at z = ±0.5. Because of the rapid decay of the fields
v, θ, w, ξ, and h the boundary conditions at z = ±0.5 are not as important as those
at x = 0.

4. Results for a thermally insulating sidewall
When there is no magnetic field, Q =0, the asymptotic analysis for large τ (HB93)

predicts that the critical Rayleigh number in the case of a thermally insulating sidewall
grows proportionally to τ , and that the wavenumber and angular frequency tend to
constant values:

Rc = π2(6
√

3)1/2τ, (4.1)

βc = π(2 +
√

3)1/2, (4.2)

ωc = −2π
√

3βc. (4.3)

We have obtained the critical conditions at large τ using different values of a fixed
Elsasser number. The variation of the critical Rayleigh number with the rotation
rate, Rc versus τ , is shown in figure 2 using both limit cases of electrical boundary
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Figure 3. The critical wavenumber βc (ascending lines, left ordinate) and the critical frequency
ωc (descending lines, right ordinate) for wall-attached convection with a thermally insulating
sidewall, P = 1, and Q = 0 (dotted lines), and Q = τ , electrically insulating (solid lines) and
electrically highly conducting (dashed lines) sidewall, obtained numerically as function of τ .

conditions, insulating (H) and highly conducting (B), and three different values of
the Elsasser number: Λ = 0, 1, 10. Asymptotically we find Rc ∝ τ which is similar to
(4.1). The corresponding critical parameters, βc and ωc, are presented in figure 3 for
the cases Λ = 1 and 0. The present results agree with (4.1), (4.2), (4.3) when there is
no magnetic field, i.e. Λ = 0.

The asymptotic behaviour as a function of the Elsasser number is shown in figure 4,
where the critical Rayleigh number and the other critical parameters are plotted for
both electrical boundary conditions, insulating and highly conducting, at a given value
τ = 108 of the rotation parameter. For such a value of τ it can be reasonably supposed
that the asymptotic limit is reached. It is observed that with an electrically conducting
sidewall the magnetic field always stabilizes the static state, even for small values of
Λ. When the sidewall is electrically insulating the stabilizing or destabilizing influence
of the magnetic field depends on the value of Λ. For τ = 108 (see the dotted line in
figure 4a) an increasing Λ has a destabilizing effect for Λm � 10 and a stabilizing
effect for larger values of Λ.

The property that the magnetic field appears to be more effective in counteracting
the stabilizing influence of the Coriolis force at the electrically insulating sidewall
than at an electrically well-conducting one, can be traced to the fact that ξ and v

both vanish at the insulating sidewall according to condition (2.15). The Lorentz force
in equation (2.10) is thus well-correlated with the Coriolis force and can balance the
latter more effectively than at a conducting sidewall.

The qualitative behaviour of the critical parameter values as a function of the
magnetic field for different values of τ is similar to the behaviour described for
τ = 108. The variation of the critical Rayleigh number with the Chandrasekhar
number, Q, is represented in figure 5 for two values of τ : τ = 5 × 103 and 104, and for
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Figure 4. (a) The critical Rayleigh number Rc as a function of Λ for wall-attached convection
with a thermally insulating sidewall, P = 1 and τ = 108, obtained for an electrically insulating
(dotted line) and an electrically well-conducting (dashed line) sidewall, and the critical Rayleigh
number for bulk convection (CH61) at τ = 108 (solid line). (b) The corresponding critical
wavenumber βc (left ordinate) for electrically insulating (solid line) and conducting (dotted
line) sidewalls. The critical frequency (right ordinate) ωc for an electrically insulating (dashed
line) and for a highly conducting (dash-dotted line) sidewall is also shown.
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Figure 5. (a) The critical Rayleigh number Rc as a function of Q for wall-attached convection
with P =1, and a thermally insulating sidewall. An electrically insulating sidewall (lower solid
line for τ = 5 × 103, upper solid line for τ = 104) yields a minimum of Rc as a function of
Q, while an electrically highly conducting sidewall with τ = 5 × 103 (lower dotted line) and
with τ = 104 (upper dotted line) gives rise to monotonic dependence. Dashed lines indicate
the functions R = π2Q (upper dashed line) and R =64.3 Q3/4 (lower dashed line). (b) The
critical Rayleigh number Rc for the onset of bulk convection (CH61), for τ =103 (solid line),
τ = 2 × 103 (densely dotted line), τ = 5 × 103 (dashed line), τ =104 (sparsely dotted line).

both types of electrical conditions at the sidewall, insulating and highly conducting. It
is found that when the sidewall is electrically highly conducting the critical Rayleigh
number for the wall mode grows with Q at the same rate as the critical Rayleigh
number for the onset of convection in the bulk of the layer (CH61): in both cases
Rc ∼ π2Q is obtained in the limit Q � 1 (see dotted lines in figure 5a). When the
sidewall is electrically insulating, Rc grows in proportion to Q3/4 for Q � 1 (see solid
lines in figure 5a).
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Figure 6. The value of Λm ≡ Q/τ (left ordinate) where the minimum of the critical Rayleigh
number as a function of Q, for a given τ is reached (solid line). The same Λm, but for bulk
convection is indicated by the dashed line. The corresponding critical values Rc (right ordinate)
of Rayleigh number, for wall-attached convection (dotted line) and for bulk convection (CH61)
(dash-dotted line) are also shown. All results are for a thermally and electrically insulating
sidewall and P = 1.

In the case of electrically insulating sidewalls, and for a fixed rotation rate, there
exists a value of Q, Q = Qm, where the curve Rc versus Q has a minimum (see
figure 5a). For Q < Qm the increasing magnetic field has a destabilizing effect, while
for Q > Qm it tends to stabilize the static fluid layer. We define Λm ≡ Qm/τ and study
the dependence of Λm on τ . The variation of Λm with τ is presented in figure 6 for a
large range of τ , from 103 to 108, for sidewall convection. The values of Λm for bulk
convection (CH61) corresponding to the minima in figure 5(b) are also shown. For the
onset of bulk convection and for large rotation rates the minimum of Rc occurs ap-
proximately at Λm = 1.73, independently of the value of τ . But for sidewall convection
Λm increases with τ and exhibits a power-law relationship Λm = 0.606 τ 0.148.

The convection fields at onset as described by (2.17) at the minimum Rc for τ = 103

are shown in figure 7. As can be seen in figure 8, where the vertical velocity is shown
for three different values of τ , the boundary layer thickness is proportional to τ−1/3.

5. Results for a thermally highly conducting sidewall
It has been found by HB93 that the critical Rayleigh number for the onset of

convection at a thermally well-conducting sidewall is not as low as that obtained for a
thermally insulating sidewall. In fact, it was shown in HB93 that the critical conditions
for the onset of convection at thermally highly conducting sidewall are given by

Rc = 0.9086(τπ)4/3 + 2.124(τπ)7/6 + o(τ ), (5.1)

βc = 1.689(τπ)1/6 + o(1), (5.2)

ωc = −8.073(τπ)1/3 + o
(
τ 1/6

)
. (5.3)
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Figure 7. Solution as a function of x for y = 0, z = − 0.25 for τ = 103 and Q = 980 for a
thermally and electrically insulating wall. The value of Q = 980 minimizes the critical value Rc

as a function of Q for a fixed τ = 103. Real (solid line) and imaginary (dashed line) parts of
the temperature θ and the toroidal component of the magnetic field ξ are shown in (a) and
(b) respectively. Real parts of the velocity ux ≡ −�2v (solid line), uy ≡ τ−1/3(∂2

xyv+∂zw) (dotted
line), uz ≡ τ−1/3(∂2

xzv − ∂yw) (dashed line) are shown in (c), while the corresponding imaginary
parts of ux (solid line), uy (dotted line), uz (dashed line) are plotted in (d).

The Rayleigh number of wall-attached convection thus exhibits the same power-law
dependence on τ as for the onset of bulk convection (CH61). In the presence of a ver-
tical magnetic field this behaviour persists when the Elsasser number is kept constant
independently of which electrical boundary condition is chosen. In figure 9 the results
obtained for both electrical insulating and highly conducting sidewalls, are shown for
a constant value of Elsasser number, Λ =0.1. It is found that for a given rotation rate
the system with an electrically well-conducting sidewall has a higher value of Rc than
the system with an insulating one. However when τ is increased the influence of the
magnetic field on the value of Rc decreases, and the critical Rayleigh numbers for both
cases, electrically insulating and highly conducting, approach the same value, namely
the value predicted by HB93 for Q =0 (see figure 9a). The frequencies ωc behave differ-
ently, however. The asymptotic value for the electrically insulating wall is larger in ab-
solute value than the value for the highly conducting wall and both values are different
from the value in the case Q =0. The critical wavenumber βc is modified by the mag-
netic field and reaches higher values when the sidewall is electrically highly conducting
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Figure 9. (a) The critical Rayleigh number Rc as a function of τ for wall-attached convection
with a thermally conducting sidewall and P = 1, numerically obtained for Q = 0 (long dashed
line, mainly obscured by the other lines), and Λ= 0.1 with electrically insulating (solid line)
and electrically highly conducting (dotted line) sidewalls. The critical Rayleigh number Rc for
the onset of bulk convection (CH61) with Λ= 0.1 is indicated with the less densely dotted
line. (b) The critical wavenumber βc (ascending lines, left ordinate) and the critical frequency
ωc (descending lines, right ordinate) as a function of τ for wall-attached convection with a
thermally conducting sidewall and P = 1, obtained for Q = 0 (solid lines), and Λ= 0.1 with
electrically insulating (dotted lines) and electrically conducting (dashed lines) sidewalls.

than when it is insulating. In the former case, for large τ βc approaches the same
value (5.2) as was predicted in HB93 for Q =0. This behaviour is demonstrated in
figure 9(b).
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Convection in the presence of a thermally well-conducting sidewall has in common
with convection in the bulk that vertical velocity and temperature go through zero
together, in contrast to the thermally insulating sidewall where θ remains finite at the
wall while uz vanishes there. This property of the thermally well-conducting sidewall
facilitates a connection between sidewall convection and bulk convection which is
apparent in the solution obtained for τ = 5000, Q =9400 as shown in figure 10(a). The
merger between sidewall convection and bulk convection requires, of course, that the
Rayleigh numbers for both modes coincide. This is the case at the particular point of
figure 10(a) in the parameter space, which corresponds to the end of the line for the
onset of the sidewall mode for an electrically insulating wall shown in figure 11(a).
Here the sidewall mode no longer precedes the onset of bulk convection and merges
with a bulk mode in a Takens–Bogdanov bifurcation as is evident from the vanishing
of the frequency at that point as shown in figure 11(c). The azimuthal wavenumber
β assumes the value 8.83 at the Takens–Bogdanov point. (The bulk mode satisfies
the boundary condition at the sidewall and corresponds to a higher wavenumber
than the critical one in the bulk. Its critical Rayleigh number is thus higher than the
Chandrasekhar value given by the solid line.) The fate of the corresponding mode
for the electrically highly conducting sidewall is entirely analogous to that of the
mode with an electrically insulating sidewall. The same behaviour as exhibited in
figure 11(a) can be found for all sufficiently large values of τ (τ � 500). In contrast
to the sidewall mode in the case of an thermally insulating sidewall, the sidewall
mode in the case of a thermally conducting wall no longer precedes the onset of bulk
convection when the strong dip of the critical bulk Rayleigh number occurs around
Λ = 1. The critical Rayleigh numbers for the sidewall modes corresponding to the
two different electrical conditions can no longer be distinguished on the large scale of
figure 11(b). As in figure 11(a) Rc for the electrical insulating sidewall decreases with
increasing Λ, while Rc for the electrically highly conducting wall increases slightly, at
least initially, with Λ.

6. Effect of the Prandtl number
The Prandtl number enters the analysis only in connection with the frequency ω.

Since the frequency is usually rather small in comparison with the rotation rate, its
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Figure 11. The critical Rayleigh number Rc as a function of Q for wall-attached convection
with P = 1. (a) For τ =5000 and a thermally and electrically insulating wall (dotted line),
thermally and electrically conducting wall (upper dashed line), and a thermally conducting
and electrically insulating wall (lower dashed line). (b) For τ = 108 and a thermally and
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number for bulk convection (CH61). (c) The critical frequency ωc as a function of Q for
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influence on the critical value of the Rayleigh number is quite modest. Only at rather
low values of P can a more significant influence on Rc be expected. To study the
influence of the Prandtl number we have thus performed computations using several
low values of P . For P less than Pt = 0.67 the onset of convection is oscillatory
in the bulk when the magnetic field strength is low enough (CH61; see values in
table 1 for comparisons). The transition Prandtl number Pt usually decreases with
increasing strength of the magnetic field. In figure 12(a) the effect of P on the critical
Rayleigh number for the onset of convection as a function of τ is shown for Λ = 1
with a thermally and electrically insulating sidewall. Three values of P have been
considered: P =1, 0.1, and 0.025. It is found that as in the case of Q =0 (HB93)
the onset of wall-attached convection with a thermally insulating sidewall has an
asymptotic limit (4.1) that does not depend on the Prandtl number. For τ � 106, Rc

is independent of P , and the critical parameters βc and ωc are also independent of P

(see figure 12b). In figure 12(c) the variation of the critical Rayleigh number Rc for
the onset of sidewall convection as a function of Q is shown for two different values
of the Prandtl number, P = 1 and 0.1, with a thermally and electrically insulating
sidewall at a fixed τ = 5 × 103. It can be seen that for Q � 104 the magnetic field
exerts a more destabilizing effect at P = 0.1 than at P =1. But for higher values of Q

the effect of magnetic field is stabilizing and Rc becomes independent of the Prandtl
number. In figure 12(d) the values of βc and ωc are shown for both cases presented
in figure 12(c).

7. Concluding remarks
The convection mode attached to a thermally insulating sidewall is the preferred

mode of convection at sufficiently high rotation rate. In the case of a thermally
well-conducting sidewall it will be preferred, at least for P � 0.37 (HB93). When
a magnetic field is applied to the layer, the wall-attached mode continues to be
the preferred instability. The electrical boundary condition at the sidewall is a new
influence that may determine the stabilizing or destabilizing effect of the magnetic
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Figure 12. (a) The critical Rayleigh number Rc for wall-attached convection with a thermally
and electrically insulating sidewall as a function of τ , numerically obtained for Q = τ and
P = 1 (solid line), P = 0.1 (dotted line), P = 0.025 (dashed line). (b) The corresponding critical
wavenumber βc (ascending lines, left ordinate) and critical frequency ωc (descending lines,
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line). (c) The critical Rayleigh number Rc as a function of Q for wall-attached convection with
a thermally and electrically insulating sidewall and τ =5 × 103, obtained for P = 1 (solid line),
P = 0.1 (dotted line). (d) The corresponding critical wavenumber βc (solid lines, left ordinate)
and the critical frequency ωc (dotted lines, right ordinate) for P = 1 (upper solid and lower
dotted lines), and P =0.1 (lower solid and upper dotted lines).

field on the system. Usually the highly electrically conducting sidewall has a less
destabilizing influence on the static state than the insulating wall. This property
results from the stronger correlation between Coriolis force and Lorentz force in
equation (2.10) caused by the similar x-dependence of v and ξ near the electrically
insulating wall such that the magnetic field more effectively counteracts the stabilizing
influence of rotation.

When the Elsasser number, Λ =Q/τ , is kept constant the critical parameters, Rc, βc

and ωc, of the wall-attached convection exhibit a dependence on τ that is qualitatively
comparable to the case without a magnetic field. At fixed rotation rate the dependence
of the critical parameters Rc, βc on the parameter Q differs from that of the stationary
bulk convection described in CH61. In bulk convection the curve R(β) has two
minima corresponding to cells of different wavenumber for sufficiently high values
of Q and τ . The values of these minima near the point where the high-wavenumber
minimum is replaced by the low wavenumber minimum in defining the critical value
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Q 1300 1500

Instability R β ω/Ω R β ω/Ω

Bulk stationary I 745444 21.59 – 743312 21.49 –
Bulk stationary II 761588 3.30 – 669953 3.30 –
Bulk oscillatory 134997 11.59 0.1370 143119 11.72 0.1342
Wallmode (IH) 140578 4.25 −0.0583 139873 4.23 −0.0569
Wallmode (IB) 152489 4.33 −0.0573 153620 4.32 −0.0559

Q 5000 5500

Instability R β ω/Ω R β ω/Ω

Bulk stationary I – – – – – –
Bulk stationary II 286257 3.77 – 276334 3.86 –
Bulk oscillatory 274958 13.17 0.0618 293196 13.32 0.0410
Wallmode (IH) 131690 4.00 −0.0372 131152 3.99 −0.0351
Wallmode (IB) 177706 4.37 −0.0381 181757 4.40 −0.0365

Table 1. Critical parameters of wall-attached, bulk stationary and bulk oscillatory convection
for τ = 5000 and P = 0.1. The instabilities Bulk stationary I and Bulk stationary II correspond
to the minima of R as a function of β with high and low wavenumber, respectively.

of the Rayleigh number are shown in the table 1 for τ = 5 × 103 and P = 0.1. Such
a discontinuity of the critical wavenumber has not been observed in the present
case of wall modes. Nevertheless the phenomenon of a non-monotonic dependence
of Rc(Q) at given τ can be observed when the sidewall is thermally and electrically
insulating.

The influence of the electrical boundary conditions on the onset of convection is
much smaller in the case of a thermally well-conducting sidewall than in the case
of a thermally insulating sidewall. In contrast to the latter boundary condition the
sidewall mode for a thermally well-conducting wall can no longer precede the onset
of bulk convection when Λ exceeds a value of order unity and τ is larger than about
500. This property results from the stronger correlation between the Coriolis force
and Lorentz force in equation (2.10) caused by the similar x-dependence of v and ξ

at the electrically insulating boundary such that the magnetic field more effectively
counteracts the stabilizing influence of rotation.

It is worth noting that wall-attached convection and convection in the bulk can
coexist quite well. In an analysis of finite-amplitude convection (Bodenschatz, Pesch &
Ahlers 2000; Sánchez-Álvarez et al. 2005) both patterns have been found for values
of the Rayleigh number greater than both of their critical values. In experiments on
finite-amplitude convection with vertical magnetic field and vertical axis of rotation
we thus expect that steady convection in the bulk can be observed together with
travelling sidewall-attached convection. In the case of a thermally insulating sidewall
such observations should be possible for all values of the Elsasser number Λ, while
the sidewall mode will disappear for Λ � 1 in the case of a thermally well-conducting
sidewall.
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